Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Cell Biol. 2002 Oct;22(19):6854-65.

Phyllopod acts as an adaptor protein to link the sina ubiquitin ligase to the substrate protein tramtrack.

Author information

  • 1Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois 60208, USA.

Abstract

The RING domain protein Sina, together with Phyllopod and the F-box protein Ebi, forms a Ras-regulated E3 ubiquitin ligase complex that activates photoreceptor cell differentiation in the eye of Drosophila melanogaster. The expression of Phyllopod is induced upon Ras activation, allowing the complex to degrade the transcription repressor Tramtrack and removing its block of neuronal development in photoreceptor precursors. We show that Phyllopod functions as an adaptor in the complex, physically linking Sina with Tramtrack via separate binding domains. One 19-amino-acid domain in Phyllopod interacts with a region of Sina's SBD domain. Another domain in Phyllopod interacts with a C-terminal helix in the POZ domain of Tramtrack. This interaction is specific to the Tramtrack POZ domain and not to other POZ domain proteins present in photoreceptor precursors. Degradation of Tramtrack is dependent upon association of Sina with its cognate binding site in Phyllopod. These results illustrate how Ras signaling can modulate an E3 ligase activity not by the phosphorylation of substrate proteins but by regulating the expression of specific E3 adaptors.

PMID:
12215542
[PubMed - indexed for MEDLINE]
PMCID:
PMC134026
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk