Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Am Chem Soc. 2002 Sep 11;124(36):10642-3.

Kanosamine biosynthesis: a likely source of the aminoshikimate pathway's nitrogen atom.

Author information

  • 1Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA.

Abstract

The biosynthetic source of the nitrogen atom incorporated into the aminoshikimate pathway has remained a question for some time. 3-Amino-3-deoxy-D-fructose 6-phosphate has previously been demonstrated to be a precursor to 4-amino-3,4-dideoxy-D-arabino-heptulosonic acid 7-phosphate and 3-amino-5-hydroxybenzoic acid via the inferred intermediacy of 1-deoxy-1-imino-D-erythrose 4-phosphate in Amycolatopsis mediterranei cell-free extract. This investigation examines the possibility that the natural product kanosamine might be a precursor to 3-amino-3-deoxy-D-fructose 6-phosphate. Kanosamine 6-phosphate was synthesized by a chemoenzymatic route and incubated in A. mediterranei cell-free lysate along with D-ribose 5-phosphate and phosphoenolpyruvate. Formation of 4-amino-3,4-dideoxy-D-arabino-heptulosonic acid 7-phosphate and 3-amino-5-hydroxybenzoic acid was observed. Subsequent incubation in A. mediterranei cell-free lysate of glutamine and NAD with UDP-glucose resulted in the formation of kanosamine. The bioconversion of UDP-glucose into kanosamine along with the bioconversion of kanosamine 6-phosphate into 4-amino-3,4-dideoxy-D-arabino-heptulosonic acid 7-phosphate and 3-amino-5-hydroxybenzoic acid suggests that kanosamine biosynthesis is the source of the aminoshikimate pathway's nitrogen atom.

PMID:
12207504
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk