Format

Send to

Choose Destination
See comment in PubMed Commons below
J Chromatogr A. 2002 Jul 12;962(1-2):29-40.

Analysis of diffusion models for protein adsorption to porous anion-exchange adsorbent.

Author information

  • 1Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.

Abstract

The ion-exchange adsorption kinetics of bovine serum albumin (BSA) and gamma-globulin to an anion exchanger, DEAE Spherodex M, has been studied by batch adsorption experiments. Various diffusion models, that is, pore diffusion, surface diffusion, homogeneous diffusion and parallel diffusion models, are analyzed for their suitabilities to depict the adsorption kinetics. Protein diffusivities are estimated by matching the models with the experimental data. The dependence of the diffusivities on initial protein concentration is observed and discussed. The adsorption isotherm of BSA is nearly rectangular, so there is little surface diffusion. As a result, the surface and homogeneous diffusion models do not fit to the kinetic data of BSA adsorption. The adsorption isotherm of gamma-globulin is less favorable, and the surface diffusion contributes greatly to the mass transport. Consequently, both the surface and homogeneous diffusion models fit to the kinetic data of gamma-globulin well. The adsorption kinetics of BSA and gamma-globulin can be very well fitted by parallel diffusion model, because the model reflects correctly the intraparticle mass transfer mechanism. In addition, for both the favorably bound proteins, the pore diffusion model fits the adsorption kinetics reasonably well. The results here indicate that the pore diffusion model can be used as a good approximate to depict protein adsorption kinetics for protein adsorption systems from rectangular to linear isotherms.

PMID:
12198970
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk