Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biomed Inform. 2001 Dec;34(6):428-39.

Modeling medical prognosis: survival analysis techniques.

Author information

  • Decision Systems Group, Brigham and Women's Hospital, Health Science and Technology Division, Harvard Medical School, Massachusetts Institute of Technology, 75 Francis Street, Boston, Massachusetts 02115, USA. machado@dsg.harvard.edu

Abstract

Medical prognosis has played an increasing role in health care. Reliable prognostic models that are based on survival analysis techniques have been recently applied to a variety of domains, with varying degrees of success. In this article, we review some methods commonly used to model time-oriented data, such as Kaplan-Meier curves, Cox proportional hazards, and logistic regression, and discuss their applications in medical prognosis. Nonlinear, nonparametric models such as neural networks have increasingly been used for building prognostic models. We review their use in several medical domains and discuss different implementation strategies. Advantages and disadvantages of these methods are outlined, as well as pointers to pertinent literature.

PMID:
12198763
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk