Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Cell Biol. 2002 Sep 2;158(5):885-900. Epub 2002 Aug 26.

The Saccharomyces cerevisiae Mob2p-Cbk1p kinase complex promotes polarized growth and acts with the mitotic exit network to facilitate daughter cell-specific localization of Ace2p transcription factor.

Author information

  • 1Division of Genetics, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.

Abstract

The Saccharomyces cerevisiae mitotic exit network (MEN) is a conserved signaling network that coordinates events associated with the M to G1 transition. We investigated the function of two S. cerevisiae proteins related to the MEN proteins Mob1p and Dbf2p kinase. Previous work indicates that cells lacking the Dbf2p-related protein Cbk1p fail to sustain polarized growth during early bud morphogenesis and mating projection formation (Bidlingmaier, S., E.L. Weiss, C. Seidel, D.G. Drubin, and M. Snyder. 2001. Mol. Cell. Biol. 21:2449-2462). Cbk1p is also required for Ace2p-dependent transcription of genes involved in mother/daughter separation after cytokinesis. Here we show that the Mob1p-related protein Mob2p physically associates with Cbk1p kinase throughout the cell cycle and is required for full Cbk1p kinase activity, which is periodically activated during polarized growth and mitosis. Both Mob2p and Cbk1p localize interdependently to the bud cortex during polarized growth and to the bud neck and daughter cell nucleus during late mitosis. We found that Ace2p is restricted to daughter cell nuclei via a novel mechanism requiring Mob2p, Cbk1p, and a functional nuclear export pathway. Furthermore, nuclear localization of Mob2p and Ace2p does not occur in mob1-77 or cdc14-1 mutants, which are defective in MEN signaling, even when cell cycle arrest is bypassed. Collectively, these data indicate that Mob2p-Cbk1p functions to (a) maintain polarized cell growth, (b) prevent the nuclear export of Ace2p from the daughter cell nucleus after mitotic exit, and (c) coordinate Ace2p-dependent transcription with MEN activation. These findings may implicate related proteins in linking the regulation of cell morphology and cell cycle transitions with cell fate determination and development.

PMID:
12196508
[PubMed - indexed for MEDLINE]
PMCID:
PMC2173146
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk