Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biochem Soc Trans. 2002 Aug;30(4):351-60.

Specificity of 14-3-3 isoform dimer interactions and phosphorylation.

Author information

  • 1University of Edinburgh, Division of Biomedical and Clinical Laboratory Sciences, Hugh Robson Building, George Square, Edinburgh EH8 9XD, Scotland, UK. Alastair.Aitken@ed.ac.uk

Abstract

Proteins that interact with 14-3-3 isoforms are involved in regulation of the cell cycle, intracellular trafficking/targeting, signal transduction, cytoskeletal structure and transcription. Recent novel roles for 14-3-3 isoforms include nuclear trafficking the direct interaction with cruciform DNA and with a number of receptors, small G-proteins and their regulators. Recent findings also show that the mechanism of interaction is also more complex than the initial finding of the novel phosphoserine/threonine motif. Non-phosphorylated binding motifs that can also be of high affinity may show a more isoform-dependent interaction and binding of a protein through two distinct binding motifs to a dimeric 14-3-3 may also be essential for full interaction. Phosphorylation of specific 14-3-3 isoforms can also regulate interactions. In many cases, they show a distinct preference for a particular isoform(s) of 14-3-3. A specific repertoire of dimer formation may influence which of the 14-3-3-interacting proteins could be brought together. Mammalian and yeast 14-3-3 isoforms show a preference for dimerization with specific partners in vivo.

PMID:
12196094
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Portland Press
    Loading ...
    Write to the Help Desk