Send to:

Choose Destination
See comment in PubMed Commons below
Biomaterials. 2002 Nov;23(21):4221-31.

Why degradable polymers undergo surface erosion or bulk erosion.

Author information

  • 1Department of Pharmaceutical Technology, University of Regensburg, 93040 Regensburg, Germany.


A theoretical model was developed that allows to predict the erosion mechanism of water insoluble biodegradable polymer matrices. The model shows that all degradable polymers can undergo surface erosion or bulk erosion. Which way a polymer matrix erodes after all depends on the diffusivity of water inside the matrix, the degradation rate of the polymer's functional groups and the matrix dimensions. From these parameters the model allows to calculate for an individual polymer matrix a dimensionless 'erosion number' epsilon. The value of epsilon indicates the mode of erosion. Based on epsilon, a critical device dimension Lcritical can be calculated. If a matrix is larger than Lcritical it will undergo surface erosion, if not it will be bulk eroding. Lcritical values for polymers were estimated based on literature data. Polyanhydrides were found to be surface eroding down to a size of approximately Lcritical = 10(-4) m while poly(alpha-hydroxy esters) matrices need to be larger than Lcritical = 10(-1) m to lose their bulk erosion properties. To support our theoretical findings it was shown experimentally that poly(alpha-hydroxy ester) matrices, which are considered classical bulk eroding materials, can also undergo surface erosion.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk