Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2002 Oct 25;277(43):40617-22. Epub 2002 Aug 20.

Sequence requirements in the catalytic core of the "10-23" DNA enzyme.

Author information

  • 1Free University Berlin, Institute of Biochemistry, Thielallee 63, 14195 Berlin, Germany.


A systematic mutagenesis study of the "10-23" DNA enzyme was performed to analyze the sequence requirements of its catalytic domain. Therefore, each of the 15 core nucleotides was substituted separately by the remaining three naturally occurring nucleotides. Changes at the borders of the catalytic domain led to a dramatic loss of enzymatic activity, whereas several nucleotides in between could be exchanged without severe effects. Thymidine at position 8 had the lowest degree of conservation and its substitution by any of the other three nucleotides caused only a minor loss of activity. In addition to the standard nucleotides (adenosine, guanosine, thymidine, or cytidine) modified nucleotides were used to gain further information about the role of individual functional groups. Again, thymidine at position 8 as well as some other nucleotides could be substituted by inosine without severe effects on the catalytic activity. For two positions, additional experiments with 2-aminopurine and deoxypurine, respectively, were performed to obtain information about the specific role of functional groups. In addition to sequence-function relationships of the DNA enzyme, this study provides information about suitable sites to introduce modified nucleotides for further functional studies or for internal stabilization of the DNA enzyme against endonucleolytic attack.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk