Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Jpn J Pharmacol. 2002 Jul;89(3):229-34.

Differential mechanism of G-protein activation induced by endogenous mu-opioid peptides, endomorphin and beta-endorphin.

Author information

  • 1Department of Anesthesiology, Medical College of Wisconsin, Milwaukee 53226, USA. toyama@mcw.edu

Abstract

It is well documented that the mu-opioid receptor (MOP-R) is expressed by neurons in several central nervous system regions. Its occupancy with agonist drugs modulate a variety of physiological processes including pain, reward, stress, immune responses, neuroendocrine functions, and cardiovascular control. Based on the receptor binding assay, endomorphin-1 and endomorphin-2 have the highest specificity and affinity for the MOP-R of any endogenous substance so far described in the mammalian nervous system. In contrast, beta-endorphin exhibits the strongest actions among endogenous opioid peptides mainly through the MOP-R; however, it also shows the distinct pharmacological actions. Recent cloning and expression studies have indicated that MOP-Rs are seven-transmembrane domain receptors whose actions are mediated through activation of heterotrimeric guanine nucleotide binding proteins (G-proteins). The activation of G-proteins by MOP-Rs can be measured by assessing agonist-induced stimulation of membrane binding of guanosine-5'-o-(3-[35S]thio)triphosphate ([35S]GTPgammaS). The subject of the present review is to focus on the differential mechanism underlying G-protein activation induced by these mu-opioid peptides using the [35S]GTPgammaS binding assay.

PMID:
12184727
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for J-STAGE, Japan Science and Technology Information Aggregator, Electronic
    Loading ...
    Write to the Help Desk