Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2002 Oct 25;277(43):41147-56. Epub 2002 Aug 8.

Large scale gene expression analysis of osteoclastogenesis in vitro and elucidation of NFAT2 as a key regulator.

Author information

  • 1Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan.


To understand the molecular events coupling between cell proliferation and differentiation by elucidating genes essential for the process, we conducted a large scale gene expression analysis of an in vitro osteoclastogenesis system consisting of recombinant RANKL and mouse RAW264 cells. The entire process leading to the formation of tartrate resistant acid phosphatase-positive multinucleated cells takes 3 days and plates become fully covered with multinucleated cells at 4 days. Microarray probing at eight time points revealed 635 genes that showed greater than 2-fold differential expression for at least one time point and they could be classified into six groups by the "k-means" clustering analysis. Among a group of 106 early inducible genes (within 2-5 h after RANKL stimulation), four genes including NFAT2 were identified as genes whose enhanced expressions were fairly correlated with an efficient induction of matured osteoclasts. Moreover, cyclosporin A significantly suppressed the multinucleated cell formation accompanying the reduction of the nuclear localization of NFAT2. When the expression of NFAT2 was suppressed by introducing antisense NFAT2, multinucleated cell formation was severely hampered. Functional analysis thus combined with gene analysis by microarray technology elucidated a key role of NFAT2 in osteoclastogenesis in vitro.

[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk