Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Neuropathol Exp Neurol. 2002 Aug;61(8):736-44.

S100A6 overexpression within astrocytes associated with impaired axons from both ALS mouse model and human patients.

Author information

  • 1Laboratory of Histopathology, Faculty of Medicine, Universit√© Libre de Bruxelles, Brussels, Belgium.

Abstract

Astrogliosis is one of the earliest pathological changes observed in neurodegenerative diseases in general and in amyotrophic lateral sclerosis (ALS) in particular. ALS is characterized by selective degeneration of motoneurons. There are 2 forms of the disease: sporadic ALS (SALS), comprising 90%-95% of cases, and familial ALS (FALS), comprising 5%-10% of cases. FALS is an age-dependent autosomal dominant disorder in which mutations in the homodimeric enzyme Cu/ Zn superoxide dismutase 1 (SOD1) is linked to the disease. The animal model for this disease is a transgenic mouse expressing the mutated human SOD1(G93A) gene. Here we show by immunohistochemistry and double immunofluorescence that astrocytes located near impaired axons of motoneurons that were selectively programmed to die overexpressed S100A6, a Ca2+/Zn2+ binding protein able to translocate into the nucleus. Transgenic mice overexpressing the mutated human SOD1 gene and patients suffering from SALS showed this selective astrocytic S100A6 expression. For instance, the pyramidal tract could be macroscopically detected on S100A6-labeled spinal cord and brainstem sections from SALS patients. Transgenic mice overexpressing the non-mutated SOD1 gene did not overexpress S100A6, although glial fibrillary associated protein astrogliosis was seen. Although these results do not give any clue about the beneficial or detrimental role played by S100A6, its induction may be assumed to appropriately serve some function(s).

PMID:
12152788
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Lippincott Williams & Wilkins
    Loading ...
    Write to the Help Desk