Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2002 Oct 18;277(42):39379-87. Epub 2002 Jul 31.

Phosphoprotein analysis using antibodies broadly reactive against phosphorylated motifs.

Author information

  • 1Cell Signaling Technology, Beverly, Massachusetts 01915, USA.


The substrates of most protein kinases remain unknown because of the difficulty tracing signaling pathways and identifying sites of protein phosphorylation. Here we describe a method useful in detecting subclasses of protein kinase substrates. Although the method is broadly applicable to any protein kinase for which a substrate consensus motif has been identified, we illustrate here the use of antibodies broadly reactive against phosphorylated Ser/Thr-motifs typical of AGC kinase substrates. Phosphopeptide libraries with fixed residues corresponding to consensus motifs RXRXXT*/S* (Akt motif) and S*XR (protein kinase C motif) were used as antigens to generate antibodies that recognize many different phosphoproteins containing the fixed motif. Because most AGC kinase members are phosphorylated and activated by phosphoinositide-dependent protein kinase-1 (PDK1), we used PDK1-/- ES cells to profile potential AGC kinase substrates downstream of PDK1. To identify phosphoproteins detected using the Akt substrate antibody, we characterized the antibody binding specificity to generate a specificity matrix useful in predicting antibody reactivity. Using this approach we predicted and then identified a 30-kDa phosphoprotein detected by both Akt and protein kinase C substrate antibodies as S6 ribosomal protein. Phosphospecific motif antibodies offer a new approach to protein kinase substrate identification that combines immunoreactivity data with protein data base searches based upon antibody specificity.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk