Send to

Choose Destination
See comment in PubMed Commons below
Med Phys. 2002 Jul;29(7):1430-7.

Dose broadening due to target position variability during fractionated breath-held radiation therapy.

Author information

  • 1Department of Radiation Oncology, University of Rochester School of Medicine and Dentistry, New York 14642-8647, USA.


Recent advances in Stereotactic Radiosurgery/Conformal Radiotherapy have made it possible to deliver surgically precise radiation therapy to small lesions while preserving the surrounding tissue. However, because of physiologic motion, the application of conformal radiotherapy to extra-cranial tumors is, at present, geared toward slowing the progression of disease rather than obtaining a cure. At the University of Rochester, we are investigating the use of patient breath-holding to reduce respiratory-derived motion in fractional radiotherapy. The primary targeting problem then becomes the small variation in tumor location over repeated breath-holds. This paper describes the effects of residual target position uncertainty on the dose distribution observed by small extra-cranial tumors and their neighboring tissues during fractional radiation treatment using breath holding. We employ two computational methods to study these effects: numerical analysis via Monte Carlo simulation and analytical computation using three-dimensional convolution. These methods are demonstrated on a 2-arc, 10-fraction treatment plan used to treat a representative lung tumor in a human subject. In the same human subject, the variability in position of a representative lung tumor was measured over repeated end-expiration breath-holds using volumetric imaging. For the 7 x 7 x 10 mm margin used to treat this 12 mm diameter tumor and the measured target position variability, we demonstrated that the entire tumor volume was irradiated to at least 48 Gy-well above the tumoricidal threshold. The advantages, in terms of minimizing the volume of surrounding lung tissue that is radiated to high dose during treatment, of using end-expiration breath holding compared with end-inspiration breath-holding are demonstrated using representative tumor size and position variability parameters. It is hoped that these results will ultimately lead to improved, if not curative, treatment for small (5-20 mm diameter) lung, liver, and other extra-cranial lesions.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Institute of Physics
    Loading ...
    Write to the Help Desk