Send to:

Choose Destination
See comment in PubMed Commons below
Cryo Letters. 2000 Mar-Apr;21(2):91-98.

Mammalian hibernation: lessons for organ preparation?

Author information

  • 1Northwick Park Institute for Medical Research, Northwick Park Hospital, Harrow, Middlesex, HA1 3UJ.


The adaptations to low environmental temperatures exhibited in mammalian hibernation are many and varied, and involve molecular and cellular mechanisms as well as the systematic physiology of the whole organism. Natural torpidity is characterised by a profound reduction in body temperature and other functions lasting from a few hours to several weeks. Controlled reduction of heart rate, respiration and oxygen consumption is followed by the fall in body temperature. However, thermoregulation persists such that a decrease in ambient temperature below dangerous levels typically triggers arousal, and shivering and non-shivering thermogenesis from brown fat provide the heat to restore body temperature to normal levels. Many of the cellular mechanisms for survival are similar to those brought into play during medium-term storage of organs destined for transplantation. For example maintenance of ionic regulation and membrane fluxes is fundamental to cell survival and function at low body temperatures. Differences between hibernating and non-hibernating species are marked by differences in Na+/K+ transport and Ca++pumps. These in turn are probably associated with alterations in the lipoproteins of the plasma membrane and inner mitochondrial membrane. We have accordingly conducted a series of pilot studies in captured Richardson's ground squirrels kept in laboratory conditions as a model for hypothermic organ preservation. Tissue function was compared during the summer (non-hibernating season) with that in the winter when the animals could be: (i) in deep hibernation in a cold chamber at 4 degree C; (ii) maintained in an ambient temperature of 4 degree C but active and awake; or (iii) active at an ambient temperature of 22 degree C. The studies involved: whole animal monitoring of standard physiological parameters; whole organ (kidney) storage and transplantation for viability assessment; storage and functional assessment on an ex vivo test circuit with capacity for perfusion at normothermic and hypothermic temperatures; measurement of thyroid function; measurements of total nucleotides (ATP, ADP and AMP)and ratios by standard techniques after freeze-clamping of organs; similar nucleotide and pH measurements using31P-NMR as a non-invasive whole animal technique; and measurement of O2 uptake and gluconeogenesis using isolated renal tubules and isolated hepatocytes. Marked differences in cold tolerance were demonstrated between organs taken from hibernating versus non-hibernating individuals. In particular kidneys transplanted from animals in deep hibernation were capable of withstanding up to 72 hours of cold storage as compared with up to 24 hours in non-hibernating squirrels or in comparable sized rats. Adaptations which might provide valuable clues in our attempts to better preserve human organs for transplantation are explored in some depth in this report.

[PubMed - as supplied by publisher]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk