Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Microbiol. 2002 Aug;45(3):865-74.

Identification of MrpI as the sole recombinase that regulates the phase variation of MR/P fimbria, a bladder colonization factor of uropathogenic Proteus mirabilis.

Author information

  • 1Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.

Abstract

Proteus mirabilis is a common cause of urinary tract infection (UTI) in individuals with structural abnormalities or long-term catheterization. The expression of mannose-resistant/Proteus-like (MR/P) fimbria is phase variable because of the inversion of a 251 bp DNA fragment that carries the promoter for the mrp operon. Previous studies have shown that mrpI, which is transcribed divergently from the mrp operon, encodes a recombinase capable of switching the orientation of this invertible element. In this study, we constructed isogenic mrpI null mutants from a clinical isolate of P. mirabilis, HI4320. A polymerase chain reaction (PCR)-based invertible element assay revealed that the isogenic mrpI null mutants were locked in one phase, either expressing (locked on) MR/P fimbriae or not (locked off), which indicated that MrpI was the sole recombinase that regulated the phase variation of MR/P fimbria. The locked-on and locked-off mutants were evaluated for virulence in the CBA mouse model of ascending UTI by co-challenges with each other and with the wild-type strain. Results from these experiments demonstrated conclusively that the MR/P fimbria was a critical bladder colonization factor of uropathogenic P. mirabilis and also suggested that the ability to switch off the expression of MR/P fimbria might be important for kidney colonization.

PMID:
12139630
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Blackwell Publishing
    Loading ...
    Write to the Help Desk