Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2002 Sep 27;277(39):36534-43. Epub 2002 Jul 19.

Enhanced expression of the human vacuolar H+-ATPase c subunit gene (ATP6L) in response to anticancer agents.

Author information

  • 1Department of Molecular Biology, University of Occupational and Environmental Health, School of Medicine, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan.

Abstract

We have isolated two overlapping genomic clones that contain the 5'-terminal portion of the human vacuolar H(+)-ATPase c subunit (ATP6L) gene. The sequence preceding the transcription initiation site, which is GC-rich, contains four GC boxes and one Oct1-binding site, but there is no TATA box or CCAAT box. In vivo footprint analysis in human cancer cells shows that two GC boxes and the Oct1-binding site are occupied by Sp1 and Oct1, respectively. We show here that treatment with anticancer agents enhances ATP6L expression. Although cisplatin did not induce ATP6L promoter activity, it altered ATP6L mRNA stability. On the other hand, the DNA topoisomerase II inhibitor, TAS-103, strongly induced promoter activity, and this effect was completely eradicated when a mutation was introduced into the Oct1-binding site. Treatment with TAS-103 increased the levels of both Sp1/Sp3 and Oct1 in nuclear extracts. Cooperative binding of Sp1 and Oct1 to the promoter is required for promoter activation by TAS-103. Incubation of a labeled oligonucleotide probe encompassing the -73/-68 GC box and -64/-57 Oct1-binding site with a nuclear extract from drug-treated KB cells yielded higher levels of the specific DNA-protein complex than an extract of untreated cells. Thus, the two transcription factors, Sp1 and Oct1 interact, in an adaptive response to DNA damage, by up-regulating expression of the vacuolar H(+)-ATPase genes. Furthermore, combination of the vacuolar H(+)-ATPase (V-ATPase) inhibitor, bafilomycin A1, with TAS-103 enhanced apoptosis of KB cells with an associated increase in caspase-3 activity. Our data suggest that the induction of V-ATPase expression is an anti-apoptotic defense, and V-ATPase inhibitors in combination with low-dose anticancer agents may provide a new therapeutic approach.

PMID:
12133827
[PubMed - indexed for MEDLINE]
Free full text

Publication Types, MeSH Terms, Substances

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk