Format

Send to:

Choose Destination
See comment in PubMed Commons below
Endocrinology. 2002 Aug;143(8):3179-82.

Mutant FGF-23 responsible for autosomal dominant hypophosphatemic rickets is resistant to proteolytic cleavage and causes hypophosphatemia in vivo.

Author information

  • 1Pharmaceutical Research Labs, KIRIN Brewery Co. Ltd., Japan.

Abstract

FGF-23 is involved in the pathogenesis of two similar hypophosphatemic diseases, autosomal dominant hypophosphatemic rickets/osteomalacia (ADHR) and tumor-induced osteomalacia (TIO). We have shown that the overproduction of FGF-23 by tumors causes TIO. In contrast, ADHR derives from missense mutations in FGF-23 gene. However, it has been unclear how those mutations affect phosphate metabolism. Therefore, we produced mutant as well as wild-type FGF-23 proteins and examined their biological activity. Western blot analysis using site-specific antibodies showed that wild-type FGF-23 secreted into conditioned media was partially cleaved between Arg(179) and Ser(180). In addition, further processing of the cleaved N-terminal portion was observed. In constrast, mutant FGF-23 proteins found in ADHR were resistant to the cleavage. In order to clarify which molecule has the biological activity to induce hypophosphatemia, we separated full-length protein, the N-terminal and C-terminal fragments of wild-type FGF-23. When the activity of each fraction was examined in vivo, only the full-length FGF-23 decreased serum phosphate. Mutant FGF-23 protein that was resistant to the cleavage also retained the activity to induce hypophosphatemia. The extent of hypophosphatemia induced by the single administration of either wild-type or the mutant full-length FGF-23 protein was similar. In addition, implantation of CHO cells expressing the mutant FGF-23 protein caused hypophosphatemia and the decrease of bone mineral content. We conclude that ADHR is caused by hypophosphatemic action of mutant full-length FGF-23 proteins that are resistant to the cleavage between Arg(179) and Ser(180).

PMID:
12130585
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon
    Loading ...
    Write to the Help Desk