Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biochem J. 2002 Oct 1;367(Pt 1):239-46.

Transport of a neurotoxicant by molecular mimicry: the methylmercury-L-cysteine complex is a substrate for human L-type large neutral amino acid transporter (LAT) 1 and LAT2.

Author information

  • 1Department of Environmental Medicine, University of Rochester School of Medicine, 575 Elmwood Avenue, Box EHSC, Rochester, NY 14642, U.S.A.

Abstract

Methylmercury (MeHg) readily crosses cell membrane barriers to reach its target tissue, the brain. Although it is generally assumed that this rapid transport is due to simple diffusion, recent studies have demonstrated that MeHg is transported as a hydrophilic complex, and possibly as an L-cysteine complex on the ubiquitous L-type large neutral amino acid transporters (LATs). To test this hypothesis, studies were carried out in Xenopus laevis oocytes expressing two of the major L-type carriers in humans, LAT1-4F2 heavy chain (4F2hc) and LAT2-4F2hc. Oocytes expressing LAT1-4F2hc or LAT2-4F2hc demonstrated enhanced uptake of [(14)C]MeHg when administered as the L-cysteine or D,L-homocysteine complexes, but not when administered as the D-cysteine, N -acetyl-L-cysteine, penicillamine or GSH complexes. Kinetic analysis of transport indicated that the apparent affinities ( K (m)) of MeHg-L-cysteine uptake by LAT1 and LAT2 (98+/-8 and 64+/-8 microM respectively) were comparable with those for methionine (99+/-9 and 161+/-11 microM), whereas the V (max) values were higher for MeHg-L-cysteine, indicating that it may be a better substrate than the endogenous amino acid. Uptake and efflux of [(3)H]methionine and [(14)C]MeHg-L-cysteine were trans -stimulated by leucine and phenylalanine, but not by glutamate, indicating that MeHg-L-cysteine is both a cis - and trans -substrate. In addition, [(3)H]methionine efflux was trans -stimulated by leucine and phenylalanine even in the presence of an inwardly directed methionine gradient, demonstrating concentrative transport by both LAT1 and LAT2. The present results describe a major molecular mechanism by which MeHg is transported across cell membranes and indicate that metal complexes may form a novel class of substrates for amino acid carriers. These transport proteins may therefore participate in metal ion homoeostasis and toxicity.

PMID:
12117417
[PubMed - indexed for MEDLINE]
PMCID:
PMC1222880
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Portland Press Icon for PubMed Central
    Loading ...
    Write to the Help Desk