Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Mol Biol. 2002 Jul 12;320(3):663-75.

A-kinase anchor protein 84/121 are targeted to mitochondria and mitotic spindles by overlapping amino-terminal motifs.

Author information

  • 1Dipartimento di Biologia e Patologia Molecolare e Cellulare, BioGem Consortium, Instituto di Endocrinologia ed Oncologia Sperimentale CNR, Universit√° Federico II, via S. Pansini 5, 80131 Naples, Italy.

Abstract

A-kinase anchor proteins (AKAPs) assemble multi-enzyme signaling complexes in proximity to substrate/effector proteins, thus directing and amplifying membrane-generated signals. S-AKAP84 and AKAP121 are alternative splicing products with identical NH(2) termini. These AKAPs bind and target protein kinase A (PKA) to the outer mitochondrial membrane. Tubulin was identified as a binding partner of S-AKAP84 in a yeast two-hybrid screen. Immunoprecipitation and co-sedimentation experiments in rat testis extracts confirmed the interaction between microtubules and S-AKAP84. In situ immunostaining of testicular germ cells (GC2) shows that AKAP121 concentrates on mitochondria in interphase and on mitotic spindles during M phase. Purified tubulin binds directly to S-AKAP84 but not to a deletion mutant lacking the mitochondrial targeting domain (MT) at residues 1-30. The MT is predicted to form a highly hydrophobic alpha-helical wheel that might also mediate interaction with tubulin. Disruption of the wheel by site-directed mutagenesis abolished tubulin binding and reduced mitochondrial attachment of an MT-GFP fusion protein. Some MT mutants retain tubulin binding but do not localize to mitochondria. Thus, the tubulin-binding motif lies within the mitochondrial attachment motif. Our findings indicate that S-AKAP84/AKAP121 use overlapping targeting motifs to localize signaling enzymes to mitochondrial and cytoskeletal compartments.

(c) 2002 Elsevier Science Ltd.

PMID:
12096916
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk