Send to:

Choose Destination
See comment in PubMed Commons below
EMBO J. 2002 Jul 1;21(13):3347-57.

Division site placement in E.coli: mutations that prevent formation of the MinE ring lead to loss of the normal midcell arrest of growth of polar MinD membrane domains.

Author information

  • 1Department of Microbiology, University of Connecticut Health Center, Farmington, CT 06032, USA.


The MinE protein functions as a topological specificity factor in determining the site of septal placement in Escherichia coli. MinE assembles into a membrane-associated ring structure near midcell and directs the localization of MinD and MinC into a membrane- associated polar zone that undergoes a characteristic pole-to-pole oscillation cycle. Single (green fluorescent protein) and double label (yellow fluorescent protein/cyan fluorescent protein) fluorescence labeling experiments showed that mutational alteration of a site on the alpha-face of MinE led to a failure to assemble the MinE ring, associated with loss of the ability to support a normal pattern of division site placement. The absence of the MinE ring did not prevent the assembly and disassembly of the MinD polar zone. Mutant cells lacking the MinE ring were characterized by the growth of MinD polar zones past their normal arrest point near midcell. The results suggested that the MinE ring acts as a stop-growth mechanism to prevent the MinCD polar zone from extending beyond the midcell division site.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk