Display Settings:


Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Plant Cell Physiol. 2002 Jun;43(6):619-27.

Suppression of S-adenosylmethionine decarboxylase activity is a major cause for high-temperature inhibition of pollen germination and tube growth in tomato (Lycopersicon esculentum Mill.).

Author information

  • 1Department of Life Science, Faculty of Bioresources, Mie University, Tsu, Mie, 514-8507 Japan.


Possible involvement of impaired polyamine biosynthesis in the poor performance of tomato pollen (Lycopersicon esculentum Mill.) at high temperatures was investigated. Incubation of pollen at 38 degrees C suppressed the increase of S-adenosylmethionine decarboxylase (SAMDC) activity in germinating pollen with little influence on arginine decarboxylase activity. Consequently, spermidine and spermine content in the pollen did not increase at 38 degrees C, while putrescine content increased at both 25 degrees C and 38 degrees C. High-temperature inhibition of pollen germination was alleviated by the addition of spermidine or spermine but not of putrescine to the germination medium. Cycloheximide inhibited SAMDC activity in parallel with pollen germination at 25 degrees C, whereas actinomycin D had no effect on either of them, indicating that enhanced SAMDC activity is associated with de novo protein synthesis. Incubation of crude enzyme extracts at 40 degrees C for 1 h did not affect SAMDC. In addition, high temperatures did not enhance protease activity in germinating pollen. These results indicate that low activity of SAMDC, probably due to impaired protein synthesis or functional enzyme formation, is a major cause for the poor performance of tomato pollen at high temperatures.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk