Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information

The acyl composition of mammalian phospholipids: an allometric analysis.

Author information

  • 1Metabolic Research Centre, Department of Biological Science, University of Wollongong, NSW 2522, Wollongong, Australia. hulbert@uow.edu.au

Abstract

Data concerning the acyl composition of tissue phospholipids from mammal species, ranging in size from the shrew (7 g) to cattle (370 kg), has been collated from the literature and analysed allometrically. Phospholipids from heart, skeletal muscle, liver and kidney exhibited similar allometric trends whereby phospholipids had a significant decrease in unsaturation index (number of double bonds per 100 acyl chains) as species body size increased whilst there was no change in the percent of unsaturated acyl chains. Whilst total polyunsaturate content did not change with body mass, both heart and skeletal muscle phospholipids showed a significant allometric decrease in the omega-3 polyunsaturate content. The content of the highly polyunsaturated docosahexaenoic acid (22:6 n-3) in phospholipids showed significant and substantial allometric decline with increasing body mass in all four tissues (exponents ranged from -0.19 in liver to -0.40 in skeletal muscle). Brain phospholipids showed no allometric trends in acyl composition and were highly polyunsaturated in all species. These trends are discussed in light of the hypothesis that the relative content of polyunsaturated acyl chains in membranes, and especially docosahexaenoate (22:6 n-3), can act as a membrane pacemaker for metabolic activity.

PMID:
12091096
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk