Display Settings:

Format

Send to:

Choose Destination
Psychol Methods. 2002 Jun;7(2):147-77.

Missing data: our view of the state of the art.

Author information

  • 1Department of Statistics and the Methodology Center, Pennsylvania State University, University Park 16802, USA. jls@stat.psu.edu

Abstract

Statistical procedures for missing data have vastly improved, yet misconception and unsound practice still abound. The authors frame the missing-data problem, review methods, offer advice, and raise issues that remain unresolved. They clear up common misunderstandings regarding the missing at random (MAR) concept. They summarize the evidence against older procedures and, with few exceptions, discourage their use. They present, in both technical and practical language, 2 general approaches that come highly recommended: maximum likelihood (ML) and Bayesian multiple imputation (MI). Newer developments are discussed, including some for dealing with missing data that are not MAR. Although not yet in the mainstream, these procedures may eventually extend the ML and MI methods that currently represent the state of the art.

PMID:
12090408
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Psychological Association
    Loading ...
    Write to the Help Desk