Display Settings:

Format

Send to:

Choose Destination
Oncogene. 2002 May 9;21(20):3207-12.

Human p14(ARF)-mediated cell cycle arrest strictly depends on intact p53 signaling pathways.

Author information

  • 1Laboratory of Molecular Tumor Biology, Department of Dermatology, University of Erlangen-Nuremberg, 91052 Erlangen, Germany.

Abstract

The tumor suppressor ARF is transcribed from the INK4a/ARF locus in partly overlapping reading frames with the CDK inhibitor p16(Ink4a). ARF is able to antagonize the MDM2-mediated ubiquitination and degradation of p53, leading to either cell cycle arrest or apoptosis, depending on the cellular context. However, recent data point to additional p53-independent functions of mouse p19(ARF). Little is known about the dependency of human p14(ARF) function on p53 and its downstream genes. Therefore, we analysed the mechanism of p14(ARF)-induced cell cycle arrest in several human cell types. Wild-type HCT116 colon carcinoma cells (p53(+/+)p21(CIP1+/+) 14-3-3sigma(+/+)), but not p53(-/-) counterparts, underwent G(1) and G(2) cell cycle arrest following infection with a p14(ARF)-adenovirus. In p21(CIP1-/-) cells, p14(ARF) did not induce G(1) or G(2) arrest, while 14-3-3sigma(-/-) counterparts were mainly arrested in G(1), pointing to essential roles of p21(CIP1) in G(1) and G(2) arrest and cooperative roles of p21 and 14-3-3sigma in ARF-mediated G(2) arrest. Our data demonstrate a strict p53 and p21(CIP1) dependency of p14(ARF)-induced cell cycle arrest in human cells.

PMID:
12082636
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk