Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2002 Sep 13;277(37):33545-58. Epub 2002 Jun 24.

Functions of transforming growth factor-beta family type I receptors and Smad proteins in the hypertrophic maturation and osteoblastic differentiation of chondrocytes.

Author information

  • 1Institut de Biologie et Chimie des Prot√©ines, UMR 5086 CNRS/Universit√© Claude Bernard Lyon 1, 7 passage du Vercors, 69367 Lyon Cedex 07, France.


We investigated the effects of bone morphogenetic protein (BMP)-2, a member of the transforming growth factor-beta superfamily, on the regulation of the chondrocyte phenotype, and we identified signaling molecules involved in this regulation. BMP-2 triggers three concomitant responses in mouse primary chondrocytes and chondrocytic MC615 cells. First, BMP-2 stimulates expression or synthesis of type II collagen. Second, BMP-2 induces expression of molecular markers characteristic of pre- and hypertrophic chondrocytes, such as Indian hedgehog, parathyroid hormone/parathyroid hormone-related peptide receptor, type X collagen, and alkaline phosphatase. Third, BMP-2 induces osteocalcin expression, a specific trait of osteoblasts. Constitutively active forms of transforming growth factor-beta family type I receptors and Smad proteins were overexpressed to address their role in this process. Activin receptor-like kinase (ALK)-1, ALK-2, ALK-3, and ALK-6 were able to reproduce the hypertrophic maturation of chondrocytes induced by BMP-2. In addition, ALK-2 mimicked further the osteoblastic differentiation of chondrocytes induced by BMP-2. In the presence of BMP-2, Smad1, Smad5, and Smad8 potentiated the hypertrophic maturation of chondrocytes, but failed to induce osteocalcin expression. Smad6 and Smad7 impaired chondrocytic expression and osteoblastic differentiation induced by BMP-2. Thus, our results indicate that Smad-mediated pathways are essential for the regulation of the different steps of chondrocyte and osteoblast differentiation and suggest that additional Smad-independent pathways might be activated by ALK-2.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk