Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Immunol. 2002 Jul 1;169(1):340-9.

The role of proinflammatory cytokines in wasting disease during lymphocytic choriomeningitis virus infection.

Author information

  • 1Department of Microbiology and Immunology, Loyola University Chicago Medical Center, Maywood, IL 60153, USA.

Abstract

Infection with pathogens often leads to loss of body weight, but the cause of weight loss during infection is poorly understood. We used the infection of mice with lymphocytic choriomeningitis virus (LCMV) as a model to study how pathogens induce weight loss. If LCMV is introduced into the CNS of CTL-deficient mice, the immune response against the virus leads to a severe weight loss called wasting disease. We planned to determine what components of this antiviral immune response mediate wasting disease. By adoptive transfer, we show that CD4 T cells activated by LCMV infection are sufficient to cause wasting disease. We examined the role of cytokines in LCMV-induced wasting disease using mice lacking specific cytokines or cytokine receptors. Results of adoptive transfer experiments suggest that TNF-alpha is not involved in LCMV-induced wasting disease and show that IFN-gamma contributes to the disease. Consistent with a role for IFN-gamma in wasting, we find that IFN-gamma is necessary for LCMV-specific CD4 T cell responses in the CNS, most likely because it is required to induce MHC class II expression. Our data also indicate that IL-1 is required for LCMV-induced wasting and that IL-6 contributes to the wasting disease. Additionally, our results identify alpha-melanocyte-stimulating hormone as a potential mediator of the disease. Overall, this work defines the critical role of virus-primed CD4 T cells and of proinflammatory cytokines in the pathogenesis of wasting disease induced by LCMV infection.

PMID:
12077263
[PubMed - indexed for MEDLINE]
Free full text

Publication Types, MeSH Terms, Substances, Grant Support

Publication Types

MeSH Terms

Substances

Grant Support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Write to the Help Desk