Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2002 Aug 23;277(34):30824-31. Epub 2002 Jun 11.

Two mcm3 mutations affect different steps in the initiation of DNA replication.

Author information

  • 1Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.


Mcm3 is a subunit of the hexameric MCM2-7 complex required for the initiation and elongation of DNA replication in eukaryotes. We have characterized two mutant alleles, mcm3-1 and mcm3-10, in Saccharomyces cerevisiae and showed that they are defective at different steps of the replication initiation process. Mcm3-10 contains a P118L substitution that compromises its interaction with Mcm5 and the recruitment of Mcm3 and Mcm7 to a replication origin. P118 is conserved between Mcm3, Mcm4, Mcm5, and Mcm7. An identical substitution of this conserved residue in Mcm5 (P83L of mcm5-bob1) strengthens the interaction between Mcm3 and Mcm5 and allows cells to enter S phase independent of Cdc7-Dbf4 kinase (Hardy, C. F., Dryga, O., Pahl, P. M. B., and Sclafani, R. A. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 3151-3155). Mcm3-1 contains a G246E mutation that diminishes the efficiency of replication initiation (Yan, H., Merchant, A. M., and Tye, B. K. (1993) Genes Dev. 7, 2149-2160) but not its interaction with Mcm5 or recruitment of the MCM2-7 complex to replication origin. These observations indicate that Mcm3-10 is defective in a step before, and Mcm3-1 is defective in a step after the recruitment of the MCM2-7 complex to replication origins.

[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk