Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Arch Biochem Biophys. 2002 Jun 1;402(1):120-35.

Alteration of product formation by directed mutagenesis and truncation of the multiple-product sesquiterpene synthases delta-selinene synthase and gamma-humulene synthase.

Author information

  • 1Institute of Biological Chemistry,Washington State University, Pullman, WA 99164-6340, USA.

Abstract

Two recombinant sesquiterpene synthases from grand fir, delta-selinene synthase and gamma-humulene synthase, each produce more than 30 sesquiterpene olefins from the acyclic precursor farnesyl diphosphate. These enzymes contain a pair of DDxxD motifs, on opposite lips of the presumptive active site, which are thought to be involved in substrate binding and could promote multiple orientations of the substrate alkyl chain from which multiple families of cyclic olefins could derive. Mutagenesis of the first aspartate of either DDxxD motif resulted in depressed k(cat), with lesser effect on K(m), for delta-selinene synthase and afforded a much simpler product spectrum composed largely of monocyclic olefins. Identical alterations in gamma-humulene synthase produced similar kinetic effects with a simplified product spectrum of mostly acyclic and monocyclic olefins. Although impaired in product diversity, none of the mutant synthases lost entirely the capacity to generate complex structures. These results confirm the catalytic significance of the DDxxD motifs and imply that they also influence permitted modes of cyclization. Deletion of an N-terminal arginine pair in delta-selinene synthase (an element potentially involved in substrate isomerization) altered kinetics without substantially altering product outcome. Finally, mutation of an active-site tyrosine residue thought to play a role in proton exchange had little influence; however, substitution of a nearby active site aspartate dramatically altered kinetics and product outcome.

PMID:
12051690
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk