Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Genetics. 2002 May;161(1):389-410.

Population, evolutionary and genomic consequences of interference selection.

Author information

  • 1Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637, USA. josep-comeron@uiowa.edu


Weakly selected mutations are most likely to be physically clustered across genomes and, when sufficiently linked, they alter each others' fixation probability, a process we call interference selection (IS). Here we study population genetics and evolutionary consequences of IS on the selected mutations themselves and on adjacent selectively neutral variation. We show that IS reduces levels of polymorphism and increases low-frequency variants and linkage disequilibrium, in both selected and adjacent neutral mutations. IS can account for several well-documented patterns of variation and composition in genomic regions with low rates of crossing over in Drosophila. IS cannot be described simply as a reduction in the efficacy of selection and effective population size in standard models of selection and drift. Rather, IS can be better understood with models that incorporate a constant "traffic" of competing alleles. Our simulations also allow us to make genome-wide predictions that are specific to IS. We show that IS will be more severe at sites in the center of a region containing weakly selected mutations than at sites located close to the edge of the region. Drosophila melanogaster genomic data strongly support this prediction, with genes without introns showing significantly reduced codon bias in the center of coding regions. As expected, if introns relieve IS, genes with centrally located introns do not show reduced codon bias in the center of the coding region. We also show that reasonably small differences in the length of intermediate "neutral" sequences embedded in a region under selection increase the effectiveness of selection on the adjacent selected sequences. Hence, the presence and length of sequences such as introns or intergenic regions can be a trait subject to selection in recombining genomes. In support of this prediction, intron presence is positively correlated with a gene's codon bias in D. melanogaster. Finally, the study of temporal dynamics of IS after a change of recombination rate shows that nonequilibrium codon usage may be the norm rather than the exception.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central Icon for Faculty of 1000
    Loading ...
    Write to the Help Desk