Reactive intermediate formation from the 2-(Fluoromethoxy)-1,1,3,3,3-pentafluoro-1-propene (compound A)-derived cysteine S-conjugate S-[2-(Fluoromethoxy)-1,1,3,3,3-pentafluoropropyl]-L-cysteine in pyridoxal model systems

Chem Res Toxicol. 2002 May;15(5):623-8. doi: 10.1021/tx010148b.

Abstract

2-(Fluoromethoxy)-1,1,3,3,3-pentafluoro-1-propene (compound A) is a degradation product of the anesthetic sevoflurane and undergoes cysteine conjugate beta-lyase-dependent bioactivation to nephrotoxic metabolites in rats. The present experiments were designed to identify reactive intermediates formed from S-[2-(fluoromethoxy)-1,1,3,3,3-pentafluoropropyl]-L-cysteine, a compound A-derived cysteine S-conjugate, in two pyridoxal model systems, namely Cu2+/pyridoxal and N-dodecylpyridoxal in cetyltrimethylammonium micelles. S-[2-(Fluoromethoxy)-1,1,3,3,3-pentafluoropropyl]-L-cysteine was incubated in the model systems with benzyl bromide, pentafluorobenzyl bromide, aniline, and o-phenylenediamine as trapping agents. The products were purified by TLC and identified by 19F and 1H NMR spectroscopy and by GC/MS. In the absence of trapping agents, 2-(fluoromethoxy)-3,3,3-trifluoropropanoic acid and 3,3,3-trifluorolactic acid, which have been identified previously in biotransformation studies, were formed. With the chemical models, 2-(fluoromethoxy)-1,1,3,3,3-pentafluoropropanethiolate, the expected first intermediate, was not trapped with benzyl bromide. Rather, the dehydrofluorination product 2-(fluoromethoxy)-1,3,3,3-tetrafluoro-1-propenylthiolate was trapped with benzyl bromide to give benzyl 2-(fluoromethoxy)-3,3,3-trifluoropropanethioate, which was formed in both chemical models. When pentafluorobenzyl bromide was used as a trapping agent, GC/MS analysis showed that the expected thiolate was trapped to give pentafluorobenzyl 2-(fluoromethoxy)-1,1,3,3,3-pentafluoropropyl sulfide in the N-dodecylpyridoxal model. In both chemical models, 2-(fluoromethoxy)-3,3,3-trifluorothioacyl fluoride was trapped with aniline to give N-phenyl 2-(fluoromethoxyl)-3,3,3-trifluoropropanethioamide, which cyclized to give 3-phenyl-4-thiono-5-(trifluoromethyl)-1,3-oxazolane. The results demonstrate that most of the reactive intermediates and products formed by the beta-lyase-catalyzed biotransformation of compound A-derived cysteine S-conjugates are also formed in the two chemical systems studied. Some products were, however, formed in chemical systems that have not been observed in previous in vivo and in vitro studies; it is not known whether these products are formed in biological systems and whether they contribute to the observed nephrotoxicity of cysteine S-conjugates.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Anesthetics, Inhalation / chemistry*
  • Ethers / chemistry*
  • Gas Chromatography-Mass Spectrometry
  • Hydrocarbons, Fluorinated / chemistry*
  • Pyridoxal / chemistry*

Substances

  • Anesthetics, Inhalation
  • Ethers
  • Hydrocarbons, Fluorinated
  • Pyridoxal
  • fluoromethyl 2,2-difluoro-1-(trifluoromethyl)vinyl ether