Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Toxicol Sci. 2002 Jun;67(2):232-40.

Prediction of compound signature using high density gene expression profiling.

Author information

  • 1National Institute of Environmental Health Sciences, P.O. Box 12233, MD2-04, Research Triangle Park, NC 27709, USA.

Abstract

DNA microarrays, used to measure the gene expression of thousands of genes simultaneously, hold promise for future application in efficient screening of therapeutic drugs. This will be aided by the development and population of a database with gene expression profiles corresponding to biological responses to exposures to known compounds whose toxicological and pathological endpoints are well characterized. Such databases could then be interrogated, using profiles corresponding to biological responses to drugs after developmental or environmental exposures. A positive correlation with an archived profile could lead to some knowledge regarding the potential effects of the tested compound or exposure. We have previously shown that cDNA microarrays can be used to generate chemical-specific gene expression profiles that can be distinguished across and within compound classes, using clustering, simple correlation, or principal component analyses. In this report, we test the hypothesis that knowledge can be gained regarding the nature of blinded samples, using an initial training set comprised of gene expression profiles derived from rat liver exposed to clofibrate, Wyeth 14,643, gemfibrozil, or phenobarbital for 24 h or 2 weeks of exposure. Highly discriminant genes were derived from our database training set using approaches including linear discriminant analysis (LDA) and genetic algorithm/K-nearest neighbors (GA/KNN). Using these genes in the analysis of coded liver RNA samples derived from 24-h, 3-day, or 2-week exposures to phenytoin, diethylhexylpthalate, or hexobarbital led to successful prediction of whether these samples were derived from livers of rats exposed to enzyme inducers or to peroxisome proliferators. This validates our initial hypothesis and lends credibility to the concept that the further development of a gene expression database for chemical effects will greatly enhance the hazard identification processes.

Comment in

PMID:
12011482
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk