Postnatal hypoxemia increases angiotensin II sensitivity and up-regulates AT1a angiotensin receptors in rat carotid body chemoreceptors

J Endocrinol. 2002 May;173(2):305-13. doi: 10.1677/joe.0.1730305.

Abstract

In the present study, the effects of postnatal hypoxemia on the AT1 angiotensin receptor-mediated activities in the rat carotid body were studied. Angiotensin II (Ang II) concentration-dependently increased the chemoreceptor afferent activity in the isolated carotid body. Single- or pauci-fiber recording of the sinus nerve revealed that the afferent response to Ang II was enhanced in the postnatally hypoxic carotid body. To determine whether the increased sensitivity to Ang II is mediated by changes in the functional expression of Ang II receptors in the carotid body chemoreceptors, cytosolic calcium ([Ca2+]i) was measured by spectrofluorimetry in fura-2 acetoxymethyl ester-loaded type I cells dissociated from carotid bodies. Ang II (25-100 nM) concentration-dependently increased [Ca2+]i in the type I cells. The proportion of clusters of type I cells responsive to Ang II was higher in the postnatally hypoxic group than in the normoxic control (89 vs 66%). In addition, the peak [Ca2+]i response to Ang II was enhanced 2- to 3-fold in the postnatally hypoxic group. The [Ca2+]i response to Ang II was abolished by pretreatment with losartan (1 microM), an AT1 receptor antagonist, but not by PD-123177 (1 microM), an AT(2) antagonist. Double-labeling immunohistochemistry confirmed that an enhanced immunoreactivity for AT1 receptor was co-localized to the lobules of type I cells in the hypoxic group. In addition, RT-PCR analysis of subtypes of AT1 receptors showed an up-regulation of AT1a but a down-regulation of AT1b receptors, indicating a differential regulation of the expression of AT1 receptor subtypes by postnatal hypoxia in the carotid body. These data suggest that postnatal hypoxemia is associated with an increased sensitivity of peripheral chemoreceptors in response to Ang II and an up-regulation of AT1a receptor-mediated [Ca2+]i activity of the chemoreceptors. This modulation may be important for adaptation of carotid body functions in the hypoxic ventilatory response and in electrolyte and water homeostasis during perinatal and postnatal hypoxia.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Angiotensin II / pharmacology*
  • Angiotensin Receptor Antagonists
  • Animals
  • Animals, Newborn
  • Calcium / metabolism
  • Carotid Body / metabolism*
  • Dose-Response Relationship, Drug
  • Hypoxia / metabolism*
  • Imidazoles / pharmacology
  • Losartan / pharmacology
  • Models, Animal
  • Pyridines / pharmacology
  • Rats
  • Rats, Sprague-Dawley
  • Receptor, Angiotensin, Type 1
  • Receptor, Angiotensin, Type 2
  • Receptors, Angiotensin / metabolism*
  • Reverse Transcriptase Polymerase Chain Reaction
  • Spectrometry, Fluorescence

Substances

  • Angiotensin Receptor Antagonists
  • Imidazoles
  • Pyridines
  • Receptor, Angiotensin, Type 1
  • Receptor, Angiotensin, Type 2
  • Receptors, Angiotensin
  • Angiotensin II
  • PD 123177
  • Losartan
  • Calcium