Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Physiol Plant. 2002 May;115(1):56-68.

Adenine phosphoribosyltransferase isoforms of Arabidopsis and their potential contributions to adenine and cytokinin metabolism.

Author information

  • 1Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada Physiologie Cellulaire et Mol√©culaire des Plantes, Universit√© Pierre et Marie Curie, Paris, 75005, France Present address: Department of Medicine, 1017 Etherington Hall, Queen's University Kingston, Ontario K7L 3 N6, Canada.

Abstract

Adenine phosphoribosyltransferase (APT; EC 2.4.2.7) is a constitutively expressed enzyme involved in the one-step salvage of adenine to AMP. The Arabidopsis thaliana genome contains five sequences annotated as encoding APT or APT-like enzymes. Three of these have now been cloned, over-expressed and compared using kinetic analyses. At a cytosolic pH, all bind adenine efficiently based on their Km values (0.8-2.6 &mgr;M), although APT1 metabolizes adenine at a rate 31-53 times faster than APT2 and APT3, respectively. Since APT also has a possible role in the interconversion of cytokinin bases to nucleotides, we characterized the activity of each isoform on zeatin, isopentenyladenine and benzyladenine. Based on their Km values, APT2 and APT3 had much higher affinities than APT1 for all three cytokinins (15-440 &mgr;M for APT2 and 3 vs. 1.8-2.5 mM for APT1); conversely the Vmax values for APT2 and APT3 on these CK substrates showed the opposite trend, being 4- to 19-fold lower than those of APT1. Anti-peptide antibodies for APT1, APT2, and APT3 were prepared and used to examine the subcellular localization of each isoform. Based on these results, APT1 and APT3 appear to be cytosolic, while the localization of APT2 was inconclusive although sequence analysis implies that APT2 is also cytosolic. Each isoform was modelled against the crystal structure of APT from Leishmania donovani, and structural differences in substrate specificity-determining domains have been found. The estimated kinetic activities of these APTs suggest that they contribute primarily to adenine recycling, although an involvement in cytokinin interconversion cannot be discounted.

PMID:
12010467
[PubMed - as supplied by publisher]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Blackwell Publishing
    Loading ...
    Write to the Help Desk