Send to

Choose Destination
See comment in PubMed Commons below
Am J Clin Dermatol. 2002;3(4):229-38.

Cellular and molecular pathophysiology of cutaneous drug reactions.

Author information

  • 1Division of Allergology, Clinic for Rheumatology and Clinical Immunology/Allergology, Inselspital, University of Bern, Bern, Switzerland.


Hypersensitivity reactions to drugs can cause a variety of skin diseases like maculopapular, bullous and pustular eruptions. In recent years increasing evidence indicates the important role of T cells in these drug-induced skin diseases. Analysis of such drug-specific T cell clones has revealed that drugs can be recognized by alpha beta-T cell receptors, not only if bound covalently to peptides, but also if the drug binds in a rather labile way to the presenting major histocompatibility complex (MHC)-peptide. This presentation is sufficient to stimulate T cells. In maculopapular exanthema (MPE), histopathological analysis typically shows a dominant T cell infiltration together with a vacuolar interface dermatitis. Immunohistochemical studies demonstrate the presence of cytotoxic CD4+ and to a lesser degree of CD8+ T cells, which contain perforin and granzyme B. They are close to keratinocytes that show signs of cell destruction. Expression of Fas ligand is barely detectable, suggesting that cytotoxic granule exocytosis may be the dominant pathway leading to keratinocyte cell damage. While in MPE, the killing of cells seems to be predominantly mediated by CD4+ T cells, patients with bullous skin disease show a strong CD8+ T cell migration to the epidermis. This is probably due to a preferential presentation of the drug by MHC class I molecules, and a more extensive killing of cells that present drugs on MHC class I molecules. This might lead to bullous skin diseases. In addition to the presence of cytotoxic T cells, drug-specific T cells also orchestrate the inflammatory skin reaction through the release and induction of various cytokines [i.e. interleukin (IL)-5, IL-6, tumor necrosis factor-alpha and interferon-gamma] and chemokines (RANTES, eotaxin or IL-8). The increased expression of these mediators seems to contribute to the generation of tissue and blood eosinophilia, a hallmark of many drug-induced allergic reactions. However, in acute generalized exanthematous pustulosis (a peculiar form of drug allergy), neutrophils represent the predominant cell type within pustules, probably due to their recruitment by IL-8 secreting drug specific T cells and keratinocytes.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk