Display Settings:

Format

Send to:

Choose Destination
J Biol Chem. 2002 Jul 12;277(28):24995-5000. Epub 2002 May 10.

Escherichia coli MoeA and MogA. Function in metal incorporation step of molybdenum cofactor biosynthesis.

Author information

  • 1Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA.

Abstract

Escherichia coli MoeA and MogA are required for molybdenum cofactor biosynthesis and are believed to function in the addition of molybdenum to the dithiolene of molybdopterin to form molybdenum cofactor. Here we show that moeA(-) and mogA(-) cells are able to synthesize molybdopterin, but both are deficient in molybdenum incorporation and, as a consequence, are deficient in the formation of molybdopterin-guanine dinucleotide. Human sulfite oxidase expressed in E. coli moeA(-) could be activated in vitro in the presence of MoeA and low concentrations of molybdate. Sulfite oxidase purified from the moeA(-) lysate was also activated, although to a lesser extent than observed in the presence of lysate. MogA was incapable of activating sulfite oxidase expressed in E. coli mogA(-). These results demonstrate that molybdenum insertion into molybdopterin is required for molybdopterin-guanine dinucleotide formation, and that MoeA facilitates molybdenum incorporation at low levels of molybdate, but MogA has an alternative function, possibly as a carrier for molybdopterin during molybdenum incorporation.

PMID:
12006571
[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk