Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Science. 2002 May 10;296(5570):1091-8.

The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism.

Author information

  • 1Howard Hughes Medical Institute and Division of Chemistry and Chemical Engineering, Mail Code 147-75CH, California Institute of Technology, Pasadena, CA 91125, USA. locher@caltech.edu

Abstract

The ABC transporters are ubiquitous membrane proteins that couple adenosine triphosphate (ATP) hydrolysis to the translocation of diverse substrates across cell membranes. Clinically relevant examples are associated with cystic fibrosis and with multidrug resistance of pathogenic bacteria and cancer cells. Here, we report the crystal structure at 3.2 angstrom resolution of the Escherichia coli BtuCD protein, an ABC transporter mediating vitamin B12 uptake. The two ATP-binding cassettes (BtuD) are in close contact with each other, as are the two membrane-spanning subunits (BtuC); this arrangement is distinct from that observed for the E. coli lipid flippase MsbA. The BtuC subunits provide 20 transmembrane helices grouped around a translocation pathway that is closed to the cytoplasm by a gate region whereas the dimer arrangement of the BtuD subunits resembles the ATP-bound form of the Rad50 DNA repair enzyme. A prominent cytoplasmic loop of BtuC forms the contact region with the ATP-binding cassette and appears to represent a conserved motif among the ABC transporters.

Comment in

PMID:
12004122
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk