Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2002 Jul 19;277(29):26128-35. Epub 2002 May 8.

All four members of the Ten-m/Odz family of transmembrane proteins form dimers.

Author information

  • 1Department of Experimental Pathology, Lund University, S-221 85 Lund, Sweden.

Abstract

Ten-m/Odz/teneurins are a new family of four distinct type II transmembrane molecules. Their extracellular domains are composed of an array of eight consecutive EGF modules followed by a large globular domain. Two of the eight modules contain only 5 instead of the typical 6 cysteine residues and have the capability to dimerize in a covalent, disulfide-linked fashion. The structural properties of the extracellular domains of all four mouse Ten-m proteins have been analyzed using secreted, recombinant molecules produced by mammalian HEK-293 cells. Electron microscopic analysis supported by analytical ultracentrifugation data revealed that the recombinant extracellular domains of all Ten-m proteins formed homodimers. SDS-PAGE analysis under nonreducing conditions as well as negative staining after partial denaturation of the molecules indicated that the globular COOH-terminal domains of Ten-m1 and -m4 contained subdomains with a pronounced stability against denaturing agents, especially when compared with the homologous domains of Ten-m2 and -m3. Cotransfection experiments of mammalian cells with two different extracellular domains revealed that Ten-m molecules have also the ability to form heterodimers, a property that, combined with alternative splicing events, allows the formation of a multitude of molecules with different characteristics from a limited set of genes.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk