Format

Send to

Choose Destination
See comment in PubMed Commons below
Can J Vet Res. 2002 Apr;66(2):86-92.

Biofilm bacteria: formation and comparative susceptibility to antibiotics.

Author information

  • 1Department of Biological Sciences, University of Calgary, Alberta. molson@ucalgary.ca

Abstract

The Calgary Biofilm Device (CBD) was used to form bacterial biofilms of selected veterinary gram-negative and gram-positive pathogenic bacteria from cattle, sheep, pigs, chicken, and turkeys. The minimum inhibitory concentration (MIC) and minimum biofilm eradication concentration (MBEC) of ampicillin, ceftiofur, cloxacillin, oxytetracycline, penicillin G, streptomycin, tetracycline, enrofloxacin, erythromycin, gentamicin, tilmicosin, and trimethoprim-sulfadoxine for gram-positive and -negative bacteria were determined. Bacterial biofilms were readily formed on the CBD under selected conditions. The biofilms consisted of micro-colonies encased in extracellular polysaccharide material. Biofilms composed of Arcanobacterium (Actinomyces) pyogenes, Staphylococcus aureus, Staphylococcus hyicus, Streptococcus agalactiae, Corynebacterium renale, or Corynebacterium pseudotuberculosis were not killed by the antibiotics tested but as planktonic bacteria they were sensitive at low concentrations. Biofilm and planktonic Streptococcus dysgalactiae and Streptococcus suis were sensitive to penicillin, ceftiofur, cloxacillin, ampicillin, and oxytetracycline. Planktonic Escherichia coli were sensitive to enrofloxacin, gentamicin, oxytetracycline and trimethoprim/ sulfadoxine. Enrofloxacin and gentamicin were the most effective antibiotics against E. coli growing as a biofilm. Salmonella spp. and Pseudomonas aeruginosa isolates growing as planktonic populations were sensitive to enrofloxacin, gentamicin, ampicillin, oxytetracycline, and trimethoprim/sulfadoxine, but as a biofilm, these bacteria were only sensitive to enrofloxacin. Planktonic and biofilm Pasteurella multocida and Mannheimia haemolytica had similar antibiotic sensitivity profiles and were sensitive to most of the antibiotics tested. The CBD provides a valuable new technology that can be used to select antibiotics that are able to kill bacteria growing as biofilms.

PMID:
11989739
PMCID:
PMC226988
[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for PubMed Central
    Loading ...
    Write to the Help Desk