Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Biochem J. 2002 May 15;364(Pt 1):165-71.

Crystal structure of human dehydroepiandrosterone sulphotransferase in complex with substrate.

Author information

  • 1Oncology and Molecular Endocrinology Research Center, Laval University Medical Center CHUL (CHUQ), 2705 Boul. Laurier, Quebec City, Quebec, G1V 4G2, Canada.

Erratum in

  • Biochem J 2002 Jun 15;364(Pt 3):888.

Abstract

Dehydroepiandrosterone sulphotransferase (DHEA-ST) is an enzyme that converts dehydroepiandrosterone (DHEA), and some other steroids, into their sulphonated forms. The enzyme catalyses the sulphonation of DHEA on the 3alpha-oxygen, with 3'-phosphoadenosine-5'-phosphosulphate contributing the sulphate. The structure of human DHEA-ST in complex with its preferred substrate DHEA has been solved here to 1.99 A using molecular replacement with oestradiol sulphotransferase (37% sequence identity) as a model. Two alternative substrate-binding orientations have been identified. The primary, catalytic, orientation has the DHEA 3alpha-oxygen and the highly conserved catalytic histidine in nearly identical positions as are seen for the related oestradiol sulphotransferase. The substrate, however, shows rotations of up to 30 degrees, and there is a corresponding rearrangement of the protein loops contributing to the active site. This may also reflect the low identity between the two enzymes. The second orientation penetrates further into the active site and can form a potential hydrogen bond with the desulphonated cofactor 3',5'-phosphoadenosine (PAP). This second site contains more van der Waal interactions with hydrophobic residues than the catalytic site and may also reflect the substrate-inhibition site. The PAP position was obtained from the previously solved structure of DHEA-ST co-crystallized with PAP. This latter structure, due to the arrangement of loops within the active site and monomer interactions, cannot bind substrate. The results presented here describe details of substrate binding to DHEA-ST and the potential relationship to substrate inhibition.

PMID:
11988089
[PubMed - indexed for MEDLINE]
PMCID:
PMC1222558
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Portland Press Icon for PubMed Central
    Loading ...
    Write to the Help Desk