Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Nature. 2002 May 2;417(6884):83-7.

Glutamate-receptor-interacting protein GRIP1 directly steers kinesin to dendrites.

Author information

  • 1Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.

Abstract

In cells, molecular motors operate in polarized sorting of molecules, although the steering mechanisms of motors remain elusive. In neurons, the kinesin motor conducts vesicular transport such as the transport of synaptic vesicle components to axons and of neurotransmitter receptors to dendrites, indicating that vesicles may have to drive the motor for the direction to be correct. Here we show that an AMPA (alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate) receptor subunit--GluR2-interacting protein (GRIP1)--can directly interact and steer kinesin heavy chains to dendrites as a motor for AMPA receptors. As would be expected if this complex is functional, both gene targeting and dominant negative experiments of heavy chains of mouse kinesin showed abnormal localization of GRIP1. Moreover, expression of the kinesin-binding domain of GRIP1 resulted in accumulation of the endogenous kinesin predominantly in the somatodendritic area. This pattern was different from that generated by the overexpression of the kinesin-binding scaffold protein JSAP1 (JNK/SAPK-associated protein-1, also known as Mapk8ip3), which occurred predominantly in the somatoaxon area. These results indicate that directly binding proteins can determine the traffic direction of a motor protein.

PMID:
11986669
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk