Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2002 Jul 12;277(28):25545-53. Epub 2002 May 1.

Dominant Saccharomyces cerevisiae msh6 mutations cause increased mispair binding and decreased dissociation from mispairs by Msh2-Msh6 in the presence of ATP.

Author information

  • 1Ludwig Institute for Cancer Research, Cancer Center, and Department of Medicine, University of California San Diego School of Medicine, La Jolla 92093-0660, USA.

Abstract

A previous study described four dominant msh6 mutations that interfere with both the Msh2-Msh6 and Msh2-Msh3 mismatch recognition complexes (Das Gupta, R., and Kolodner, R. D. (2000) Nat. Genet. 24, 53-56). Modeling predicted that two of the amino acid substitutions (G1067D and G1142D) interfere with protein-protein interactions at the ATP-binding site-associated dimer interface, one (S1036P) similarly interferes with protein-protein interactions and affects the Msh2 ATP-binding site, and one (H1096A) affects the Msh6 ATP-binding site. The ATPase activity of the Msh2-Msh6-G1067D and Msh2-Msh6-G1142D complexes was inhibited by GT, +A, and +AT mispairs, and these complexes showed increased binding to GT and +A mispairs in the presence of ATP. The ATPase activity of the Msh2-Msh6-S1036P complex was inhibited by a GT mispair, and it bound the GT mispair in the presence of ATP, whereas its interaction with insertion mispairs was unchanged compared with the wild-type complex. The ATPase activity of the Msh2-Msh6-H1096A complex was generally attenuated, and its mispair-binding behavior was unaffected. These results are in contrast to those obtained with the wild-type Msh2-Msh6 complex, which showed mispair-stimulated ATPase activity and ATP inhibition of mispair binding. These results indicate that the dominant msh6 mutations cause more stable binding to mispairs and suggest that there may be differences in how base base and insertion mispairs are recognized.

PMID:
11986324
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk