Send to

Choose Destination
See comment in PubMed Commons below
Neuropharmacology. 2002 Apr;42(5):662-9.

Inhibition of skeletal muscle nicotinic receptors by the atypical antipsychotic clozapine.

Author information

  • 1Laboratory of Cellular and Molecular Neurobiology, Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-4550, USA.


We have previously observed that certain atypical antipsychotic drugs reduce the amplitude and duration of miniature end-plate currents (EPCs) at the frog neuromuscular junction (Effects of atypical antipsychotics on vertebrate neuromuscular transmission, Nguyen, Q.-T., Yang, J., Miledi, R. Neuropharmacology 42, 2002, 670-676), therefore suggesting that these drugs act on nicotinic acetylcholine receptors. In this study we examined the effects of the atypical antipsychotic clozapine on nicotinic receptors of frog neuromuscular end-plates or in Xenopus oocytes expressing the alpha(1)beta(1)gamma delta mouse skeletal muscle nicotinic receptor. At neuromuscular junctions, postsynaptic currents were reduced by micromolar concentrations of clozapine. This compound also acted presynaptically by increasing the quantal content of EPCs of muscles without noticeably affecting paired-pulse facilitation. In oocytes, clozapine inhibited alpha(1)beta(1)gamma delta receptors with an IC(50) of 10 microM and a Hill coefficient of 1. Blockage of alpha(1)beta(1)gamma delta receptors by clozapine bears several hallmarks of open-channel blockers, including faster response decays, strong voltage dependence of the block, large rebound currents upon wash, and reduction of peak responses even at saturating concentrations of acetylcholine. However, clozapine increased the EC(50) for acetylcholine and its blocking effect was enhanced by preincubation. These results suggest that clozapine antagonizes muscle nicotinic receptors by blocking open channels, and possibly also by another mechanism which still remains to be investigated.

[PubMed - indexed for MEDLINE]

LinkOut - more resources

Full Text Sources

Other Literature Sources

Molecular Biology Databases


PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk