Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Mol Cell. 2002 Apr;9(4):713-23.

Sulfur sparing in the yeast proteome in response to sulfur demand.

Author information

  • 1Service de Biochimie et Génétique Moléculaire, Bâtiment 142, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex, France.

Abstract

Genome-wide studies have recently revealed the unexpected complexity of the genetic response to apparently simple physiological changes. Here, we show that when yeast cells are exposed to Cd(2+), most of the sulfur assimilated by the cells is converted into glutathione, a thiol-metabolite essential for detoxification. Cells adapt to this vital metabolite requirement by modifying globally their proteome to reduce the production of abundant sulfur-rich proteins. In particular, some abundant glycolytic enzymes are replaced by sulfur-depleted isozymes. This global change in protein expression allows an overall sulfur amino acid saving of 30%. This proteomic adaptation is essentially regulated at the mRNA level. The main transcriptional activator of the sulfate assimilation pathway, Met4p, plays an essential role in this sulfur-sparing response.

PMID:
11983164
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk