Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Pharmacogenomics. 2002 Jan;3(1):19-30.

The pharmacogenetics of NAT: structural aspects.

Author information

  • 1Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK. fpompeo@pasteur.fr

Abstract

Arylamine N-acetyltransferases (NATs) catalyze the transfer of an acetyl group from acetyl-CoA to arylhydrazines and to arylamine drugs and carcinogens or to their N-hydroxylated metabolites. NAT plays an important role in detoxification and metabolic activation of xenobiotics and was first identified as the enzyme responsible for inactivation of the antitubercular drug isoniazid, an arylhydrazine. The rate of inactivation was polymorphically distributed in the population: the first example of interindividual pharmacogenetic variation. Polymorphism in NAT activity is primarily due to single nucleotide polymorphisms (SNPs) in the coding region of NAT genes. NAT enzymes are widely distributed in eukaryotes and genome sequences have revealed many homologous members of this enzyme family in prokaryotes. The structures of S almonella typhimurium and Mycobacterium smegmatis NATs have been determined, revealing a unique fold in which a catalytic triad (Cys-His-Asp) forms the active site. Determination of prokaryotic and eukaryotic NAT structures could lead to a better understanding of their role in xenobiotics and endogenous metabolism.

PMID:
11966400
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Atypon
    Loading ...
    Write to the Help Desk