Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biomed Opt. 2002 Apr;7(2):199-204.

Linear birefringence of the retinal nerve fiber layer measured in vitro with a multispectral imaging micropolarimeter.

Author information

  • 1University of Miami School of Medicine, Bascom Palmer Eye Institute, Miami, Florida 33136, USA.

Abstract

Scanning laser polarimetry (SLP) assesses the retinal nerve fiber layer (RNFL) for glaucoma diagnosis by detecting the birefringence of the peripapillary RNFL. A detailed understanding of SLP requires an accurate value for RNFL birefringence in order to relate measured retardance to RNFL thickness, but current knowledge of this value is limited. A multispectral imaging micropolarimeter of PSC'A type was used to measure the retardance in transmission of the RNFL of isolated rat retina before (living) and after (fixed) 20 min of glutaraldehyde fixation. The thickness of the nerve fiber bundles measured was then determined histologically. As previously known from reflectance measurements, in transmission the RNFL behaved as a linear retarder. The retardance of the RNFL was constant at wavelengths from 440 to 830 nm and persisted after tissue fixation. In 37 nerve fiber bundles of 8 retinas, the average RNFL birefringence was 0.23 nm/microm before and 0.19 nm/microm after fixation, with an uncertainty of 0.01 nm/microm. The wavelength independence is consistent with a mechanism of form birefringence from thin cylindrical organelles. These results allow extrapolation of previous visible wavelength measurements to the near-infrared wavelengths used by SLP and validate the use of fixed tissue for RNFL research.

PMID:
11966304
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems
    Loading ...
    Write to the Help Desk