Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Blood. 2002 May 1;99(9):3179-87.

Adapting a transforming growth factor beta-related tumor protection strategy to enhance antitumor immunity.

Author information

  • 1Center for Cell and Gene Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.

Abstract

Transforming growth factor beta (TGF-beta), a pleiotropic cytokine that regulates cell growth and differentiation, is secreted by many human tumors and markedly inhibits tumor-specific cellular immunity. Tumors can avoid the differentiating and apoptotic effects of TGF-beta by expressing a nonfunctional TGF-beta receptor. We have determined whether this immune evasion strategy can be manipulated to shield tumor-specific cytotoxic T lymphocytes (CTLs) from the inhibitory effects of tumor-derived TGF-beta. As our model we used Epstein-Barr virus (EBV)-specific CTLs that are infused as treatment for EBV-positive Hodgkin disease but that are vulnerable to the TGF-beta produced by this tumor. CTLs were transduced with a retrovirus vector expressing the dominant-negative TGF-beta type II receptor HATGF-betaRII-Deltacyt. HATGF-betaRII-Deltacyt- but not green fluorescence protein (eGFP)-transduced CTLs was resistant to the antiproliferative and anticytotoxic effects of exogenous TGF-beta. Additionally, receptor-transduced cells continued to secrete cytokines in response to antigenic stimulation. TGF-beta receptor ligation results in phosphorylation of Smad2, and this pathway was disrupted in HATGF-betaRII-Deltacyt-transduced CTLs, confirming blockade of the signal transduction pathway. Long-term expression of TGF-betaRII-Deltacyt did not affect CTL function, phenotype, or growth characteristics. Tumor-specific CTLs expressing HATGF-betaRII-Deltacyt should have a selective functional and survival advantage over unmodified CTLs in the presence of TGF-beta-secreting tumors and may be of value in treatment of these diseases.

PMID:
11964281
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk