Clinical pharmacokinetics of 5-fluorouracil with consideration of chronopharmacokinetics

Chronobiol Int. 2002 Jan;19(1):177-89. doi: 10.1081/cbi-120002597.

Abstract

Even though 5-fluorouracil (FU) is one of the oldest anticancer drugs, its use in cancer chemotherapy continues to increase. Fluorouracil is a pro-drug that requires intracellular activation to exert its effects. This makes it difficult to associate blood drug concentration with cell toxicity directly, although data from the literature show the existence of such a relationship. The relationship between FU pharmacokinetics and patient response has been explored extensively and reports attest a link between systemic drug exposure and response and survival. This has led to the concept of maximal tolerated exposure, and strategies to achieve this rely on pharmacokinetic follow-up and individual dose adjustment. More than 80% of the administered FU dose is eliminated by catabolism through dihydropyrimidine dehydrogenase (DPD), the rate-limiting enzyme. Dihydropyrimidine dehydrogenase activity is found in most tissues but is highest in the liver. Peripheral blood mononuclear cells (PBMC) are used to monitor clinically DPD activity. A significant, but weak correlation between PBMC and liver DPD activity has been observed. The relationship between PBMC-DPD activity and FU systemic clearance is weak (r2 = 0.10); thus, simply determining PBMC-DPD is not sufficient to predict accurately FU clearance. Population pharmacokinetic analysis identified patient co-variables that influence FU clearance; drug kinetics is significantly reduced by increased age, high serum alkaline phosphatase, length of drug infusion, and low PBMC-DPD. Autoregulation of FU metabolism also is suggested; inhibition of DPD activity was observed after FU administration in both colorectal cancer patients and an animal model. Circadian rhythmicity in DPD activity is suggested from both human and animal investigations. In patients receiving protracted low dose 5-FU infusion, the circadian rhythm in FU plasma concentration peaks at 11:00h and is lowest at 23:00h, on average. The inverse relationship observed between the circadian profile of FU plasma concentration and PBMC-DP activity in these same patients suggests a link between DPD activity and FU pharmacokinetics. The impact of the biological time of drug administration was also studied with short venous infusions; clearance was 70% greater at 13:00h than at 01:00h. Similarly, peak drug concentration occurred in the first half of the night in patients receiving constant rate 5-FU infusion for 2-5d. Several studies describe wide interindividual variation in the timing of the peak and trough of the 24h rhythm in DPD activity. The rational for FU chronomodulated therapy has been the circadian rhythm in host drug tolerance, which is greatest during the night time when the proliferation of normal target tissue is least. A randomized study of chronomodulated FU therapy with maximal delivery rate at 04:00h was shown clearly to be significantly more effective and less toxic than control flat FU therapy. Future research must focus on easy-to-obtain markers of specific rhythms to individualize the chronomodulated FU delivery.

Publication types

  • Review

MeSH terms

  • Antimetabolites, Antineoplastic / administration & dosage*
  • Antimetabolites, Antineoplastic / pharmacokinetics*
  • Biological Availability
  • Chronotherapy*
  • Circadian Rhythm
  • Dihydrouracil Dehydrogenase (NADP)
  • Fluorouracil / administration & dosage*
  • Fluorouracil / pharmacokinetics*
  • Humans
  • Neoplasms / drug therapy
  • Neoplasms / metabolism
  • Oxidoreductases / metabolism

Substances

  • Antimetabolites, Antineoplastic
  • Oxidoreductases
  • Dihydrouracil Dehydrogenase (NADP)
  • Fluorouracil