Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Biol Evol. 2002 May;19(5):728-35.

Genome evolution and developmental constraint in Caenorhabditis elegans.

Author information

  • 1Department of Organismic and Evolutionary Biology, Biological Laboratories, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.

Abstract

It has been hypothesized that evolutionary changes will be more frequent in later ontogeny than early ontogeny because of developmental constraint. To test this hypothesis, a genomewide examination of molecular evolution through ontogeny was carried out using comparative genomic data in Caenorhabditis elegans and Caenorhabditis briggsae. We found that the mean rate of amino acid replacement is not significantly different between genes expressed during and after embryogenesis. However, synonymous substitution rates differed significantly between these two classes. A genomewide survey of correlation between codon bias and expression level found codon bias to be significantly correlated with mRNA expression (r(s) = -0.30 and P < 10(-131)) but does not alone explain differences in dS between classes. Surprisingly, it was found that genes expressed after embryogenesis have a significantly greater number of duplicates in both the C. elegans and C. briggsae genomes (P < 10(-20) and P < 10(-13)) when compared with early-expressed and nonmodulated genes. A similarity in the distribution of duplicates of nonmodulated and early-expressed genes, as well as a disproportionately higher number of early pseudogenes, lend support to the hypothesis that this difference in duplicate number is caused by selection against gene duplicates of early-expressed genes, reflecting developmental constraint. Developmental constraint at the level of gene duplication may have important implications for macroevolutionary change.

PMID:
11961106
[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk