Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
J Am Chem Soc. 2002 Apr 24;124(16):4184-5.

A pi-stacking terthiophene-based quinodimethane is an n-channel conductor in a thin film transistor.

Author information

  • 1Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA.

Abstract

A terthiophene-based quinodimethane, 3',4'-dibutyl-5,5' '-bis(dicyanomethylene)-5,5' '-dihydro-2,2':5',2' '-terthiophene (1) was synthesized and crystallized. Compound 1 has a planar quinoid geometry that is stabilized by dicyanomethylene groups at each end of the molecule. In the crystal each molecule is part of a dimerized face-to-face pi-stack, with intermolecular spacings of 3.47 and 3.63 A, respectively. Cyclic voltammetry showed that 1 could be reversibly reduced and oxidized in methylene chloride solution. Thin film transistors (TFTs) were prepared by vacuum evaporation of 1 onto SiO2(300 nm)/Si substrates, followed by evaporation of Ag source and drain contacts. The doped Si substrate served as the gate electrode. X-ray diffraction and atomic force microscopy indicate the films are polycrystalline, with the long axes of the molecules approximately perpendicular to the substrate. The TFT measurements revealed n-channel conduction in films of 1, with room-temperature electron field effect mobilities as high as 0.005 cm2/Vs. The butyl side chains give 1 appreciable solubility in a range of common solvents, and preliminary TFT results on films cast from chlorobenzene show electron mobility as high as 0.002 cm2/Vs. These results indicate that pi-stacked quinoidal thiophene oligomers are a promising new class of soluble n-channel organic semiconductors.

PMID:
11960427
[PubMed]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk