Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Neuroscientist. 2002 Apr;8(2):111-21.

Neural coding and the basic law of psychophysics.

Author information

  • 1Krieger Mind/Brain Institute and Neuroscience Department, Johns Hopkins University, Baltimore, Maryland 21218, USA. kenneth.johnson@jhu.edu

Abstract

There have been three main ideas about the basic law of psychophysics. In 1860, Fechner used Weber's law to infer that the subjective sense of intensity is related to the physical intensity of a stimulus by a logarithmic function (the Weber-Fechner law). A hundred years later, Stevens refuted Fechner's law by showing that direct reports of subjective intensity are related to the physical intensity of stimuli by a power law. MacKay soon showed, however, that the logarithmic and power laws are indistinguishable without examining the underlying neural mechanisms. Mountcastle and his colleagues did so, and, on the basis of transducer functions obeying power laws, inferred that subjective intensity must be related linearly to the neural coding measure on which it is based. In this review, we discuss these issues and we review a series of studies aimed at the neural mechanisms of a very complex form of subjective experience-the experience of roughness produced by a textured surface. The results, which are independent of any assumptions about the form of the psychophysical law, support the idea that the basic law of psychophysics is linearity between subjective experience and the neural activity on which it is based.

PMID:
11954556
[PubMed - indexed for MEDLINE]
PMCID:
PMC1994651
Free PMC Article

Images from this publication.See all images (5)Free text

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk